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SUMMARY

A theoretical analysis was made of the characteristics of
constant-chord partial-span control surfaces on thin triangular
wings at supersonic speeds by use of methods based on the linearized
theory for supersonic flow. Two cases were treated: b one the
flap was considered to exbend outboard from the center of the wing
and in the other the flap was considered to etiend inboard from the
wing tip. Expressions were fouad for the lift coefficient, rolling-
moment coefficient, and hinge-mcment coefficient due to flap deflec-
tion, the hinge-moment coefficient due to angle of attack, and the
pitching-moment coefficient due to flap 13ft.

A few figures are given to illustrate the aypli.cationof the
equations.

INTRODUCTION

The problem of the constant-chord full-span control surface on
a triangular wing has been considered in reference 1. The present
paper treats two types of constant-chord partial-span flaps, one
exbending outboard from the center of the wing and the other exbending
inboard from the tip of the ting (see fig. 1). The second type thus
includes the flap of reference 1 as a special case. The essential
parts of the solution for the gutboard flaps have also been given in
reference 2.

The purpose of the present paper is not to present voluminous
desi~ charts but rather to develop equations from which any of the
characteristics of constant-chord partial-span fldps on triangular
tings can be cdctited. A few figures are given, however, which
show typical variations.of control-surface characteristics with
ratio of flap span to wing span and with Mach number.

The analysis was made by use of methods based on the linearized
equation for supersonic flow; therefore, the results are subject to
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Mmitatlom of the linearized theory. Boundary-layer
have been neglected.

SYMBOLS

maximum wing span

total flap span (see fig. 1)

wing

“ting

wing

flap

flap

13.ft

root chord

local chord

mean aerodynamic

chord

root-mean-square

()Lcoefficient ~

.-

——
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chord

pitching-mcment coefficient about wing mean aerodynamic

.() Mcenter —
C&

()rolling-moment coefficient J-
@b

hinge-moment coefficient

()

H

qbf-E+2

()lifting pressurs coefficient g
Q

complete elliptic integral of second ldnd with

.d~. m (table I,-equation 6)

hinge moment of two flaps

.

—
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M

P

w

E,q

“P

Mft of two flaps

roUing moment of two flaps, each deflected an
amount 5 in opposite directions

free-stream Mach number; pitching mment of two flaps

0

2about wing aerodynamic center at —c
3

lifting pressure

free-stream dyoamic pressure
()

p+
T

wing area

area d? two flaps

free-stream velocity

vertical disturbance velocity (5V)

3

Cartesian coordinates paraUel and normal, respectively,
to free-stream direction (for field points)

Cartesian coordinates parallel and normal to free-stream
direction (for source points)

angle of attack

angle of flap

ting-scmlapex

deflection

angle.

l&.changle (t=-.;)

—- —
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P free-stream density

$ disturbance-velocitypotential

!& disturbance velocity in x-direction

Subscripts:

u! partial derivative of coefficient with respect to CL

partial derivative of coefficiat with respect to 5

Tartial derivative of coefficient with respect to C!L

infinite-span or two-dimensional -g condition

All angles are In radians,

●

✌

unless otherwise s~ecified.

ANALYsm ,

The following analysis is concerned tith constant-chord partial-
span control surfaces located either outboard or inboard on the wing.
(See fig. 1.) The Mach lines may be either ahead of or behind the
leading edge of the wing. Because the pressure distributions for
certain parts of the inboard and outboard flays are identical, the
two cases are considered concurrently.

The control-surface characteristics to be determined are as ,
follows:

CL~ lift coefficient due to flap deflection

%8 rolling-moment coefficient due to flap deflection

c%
pitchingaoment coefficient due to flap lift

-L

Chb hinge-moment coefficient due to flap

c~a hinge-moment coefficient due to wing

—

.—.—

--

—

deflection 6._

angle of attack .-
)
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Pressure distributions.- Any of the aforementioned control-surface
characteristics can le found if the pressure distributions due to flap
deflection at constant angle of attack and due to angle of attack at
constant flap deflection are known. This fact is true because of the
principle of superposition.

The pressure distributions over certaim regions of’tne flaps
and over the wings are already known. For both the inboard flaps
end the outboard f~ps, the pressure due to flay deflection in the
region between the Mach cones syringing from the inner and outer
corners of the flap is eqyal to the pressure on an inf%dte-span wing
at an angle of attack. The pressure due to flap deflection ti the
tip Mach cone of the outboard flap when the Mach lines are ahead of
the leading edge has been found in reference 1. The yressure distri-
butions over the wing due to angle of attack have been found In
reference 3 (Mach lines behind the leadlng edge) and reference 4
(Mach lines ahead of the leading edge).

There remain to be determined only the pressure distributions
due to flap deflection in the folltig regions: First, the inner
Mach cone of the outboard flap and the inner and outer Mach cones of
the inboard flap (all three cases are identical); amd, second, the
tip of the outboard flap when the ~ch lines are behind the leading
edge. The pressure distribution for the first case is given in
appendix A and for the second case, in appendix B.

The various pressure distributions are shown graphically in
figures 2 and 3; the equations for the pressure distributions are
given directly on the figures for ease of reference.

Derivation of control-&rface characteristics.- Once the pressure
distributions are known, the various control-surface characteristics
can be found by integrating the pressure over the proper areas,
multiplying by a~propriate center-of-pressure distances when necessary,
and dividing by the proper dimensions to form coefficients. various
illustrations of this procedure can be found in references 1 and 5.
Giving all the derivations for the caseb treated in the present paper
would cause the paper to be unduly len@hy; therefore, only one
sample derivation is given.

The e~ple chosen is Cha for the outboard flap when the Mach

lines are ahead of the lead3ng edge. The equations for the Tressure
distribution are found from figure 2. Consider first the inner Mach
cone. Integrating the pressure only over the part of the flap con-
tained in the Mach cone (since the pressure on the wing contributes
no hinge moment) gives for the lift on this part of the flap
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and, since the pressure distribution in the Mach cone is conical, the

center.of pressure of this lift is &f behind the hinge he. The

hinge moment on this part of the flap is then

4=---
3

Neti, for the part of the flap contained betwgen the inner and outer
Mach cones, the pressure over this entire region is noted to be
coqstant at the two-dimensional value, so that the hinge moment can
be found simply by’multipl.yingthe pressure by the mcmmnt of the
tra~ezoidal area shout the hinge line which @ves

H 6m+8cf3 Cfz
.=— — -bf—
qa 3 p2 P

The lift in the ti~ region has been found h reference 1 to be

L .&3m+l)
~- 92

and, since the flow in the tip region is conical, the hinge moment is

H ~ Cf$5a+l)=-&m+l)~=-3 3 p2

Adding the three hinge moments gives the total hinge moment

,

1

,-

,
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The htige-mment coefficient is formed by dividing the total hinge

nmment by bfEf2/2, which in this case is found to be

–*
bfcf bfcf2 * cfs
—= —- —

2 2 3‘T

Performing the division yields

The other control-surface characteristics may be derived in a
similar manner. Before giving the final equations, however, a short
discussion of the rsnge of applicability is advisable.

Ranm of applicability.- Both in the discussion of pressure
distributions and h the sample derivation of one of the control- .
surface characteristics, the Mach lines-were tacitly assumed to have
had the positions shown in figure 2. hkny other cases are possible;
for example, two Mach lines my intersect or a Mach line from one
corner of a flap may cross the leating edge of the @g. These
various cases have been examined to detezm.dneover Just what range
each equation is applicable. The method used to determine the range
of applicability is given h appendix C. Expression of the 13mits
as mintmum and maxtmum values of bf/b that could be used for

given values of cf~c and m is convenient.

Rather than attempt to describe verbally each case, reference
is made to figures 5 and 6, which show graphically the limits found
for each control-surface characteristic. The right-hand side.of each
figure is intended as a guide to the left-hand side and shows how the
range of each equation can be found quickly from the left-hand side.
The equation numbers on the figures refer to the eqzations which are
given in tables I, II, andIII. In order to make figures 5 and 6
more convenient to use, lines of constant flap area ratio Sf/S are

included. In two cases the equations for Cha as orighally derived

have been extended to cover a wider range. One of these extensions
is derived in appendix D.
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DISCUSSION AND CONCLUDING REMARKS

The final equations for.the control-surface characteristics are
●

presented in tables 1, II, and 111, together with the range of
applicability of each equation. The eqtition numbers correspond to
those given in figures 5 smd 6.

D_-—
—

In figure 7 are shown the variations with ratio of flap span
to wing span of som~ of the control-surface characteristicsfor
both inboard and outboard flaps. These calc@ations were made for
a constant ratio of flap area to wing area of.Q02 at a value

—

of m= 0.8. One point to notice is that small-chord, large-span
flaps are the most efficient when the lift per unit hinge moment -cL/H
is used as a criterion. This general finding is consistent with the
results of.subsonic investigations.

—

The curves of C2# for outboard flaps in figure 7 show the

interesting fact that for a given flap area ratio an optimum fbp
span ratio exists that gives the greatest roug-moment effectiveness.
This o~timum flap s an ratio has been found by differentiation of

Eequations (2) and ( ) and is shown in figure 8_for various values of m.
For m> 1 (Mach lines behind the leading edge) the resultant flap i

is a triangular-tip control rotating about an axis normal to the *

%tresm, as shown by the small sketch on figure 8.
.——

.-

The variation with Mach number of the various control-surface
characteristics is shown in figures 9 and 10 for two particular
configurations. The equations lyesented in this paper can be Wed

—

to calculate similar curves for other configurations.
—

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., Mwch 31, 1948

I
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APPENDIXA

PRJZSSURXDISTK5UT ION UWER 13TBUARDCORNEROF FLKP

The flap in figure 11 may be represented by a uniform distribu-
tion of sources and sinlm. If the chordwise gap between wing and
flap is mnsidered sealed, the pressure distribution due to flap
deflection may be dete~ed by the method of reference 3.

The
due to a

where w
over the

equation for the surface velocity potential at point (xjy)
uniform source distribution is given by reference 3 as

is the vertical velocity and the”area of integration is
fore-cone of (X,y) . Thus,

The first integration (reference 6, equation 2@.01) gives

@(x,-Y) = ‘;~y’dn[-co.h-ll;;},,l]:(’-y)

.
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Differentiation under the integral sign with respect to x results in

l?hisintegral can be evaluated (reference 6, equation 3b.001) to
give —.

[
$X(X9Y) ‘-~ -*i9i.11-12p2y2jx2B27

“1

Y~

o

where at yl

o

_x+f3y
7

P

Thus,

[
LJ%Y)=-3 -sfI1-lPY - (X+py 1) + sin-l ~

* x x

( )w ~+sin-l~=-—
7@2

.

Since @x is constant along lines ~ = constant, a new variable V = ~
x

is introduced.
.
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Then,

@x(x,Y) ‘- -( )wz+s~-1~
3@2

or

#x(%Y) =-~ COB -1(-V)
@

From reference 3 (taldng into account upper and lower surfaces),

Since ~ . 8,
v

( )_45s+sti-1~
CP *2

Cp = : Cos-+v)

11
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A2EENOIXB .

TRESSORE ON OUTER CORNER OF 0137B0ARDFLM?S (m > 1)

The pressure within the Mach oone over the outboard corner of
the flap when the Wch line lies behtid the leading edge of the
flap (see fig. 11) may be dete~ed in a manner shilar to that
of appendix A. The equation for the potential is then the two-

dhensional value -~ minus the contribution from the”source
P

distribution in area A, Then,

//

Y2 X-p(q-y)
+x dq

d~

* Yl o j(x - E)2 -B%-q)i

The first integration (reference 6, equation 2@.01) gives

.

--
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Differentiation tith respect to x to obtain fix gives.

13

dn

d(x - ‘T#-p(y-T))*

wJ
Y1--

Yt
0

.

The integrals can

dn

ix? - 132y2+2@y - IcK)q- (P* - @q*

b,eevaluated (reference 6, eqya.tion380.001) to give
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&zLet V== and m=:; then, .

~xSince Cp =-—
7

and W = ~~,

[

Cp = % COS-l v + ( )]~o~-l 1 - m~

e
m-V

-1

men V . 1, this expression for CP becomes

.

The pressure is constant at this value everywhere outboard of the
Mach cone.

.

.
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APPENmX c

METHOD OF ~ING TEE RANGE.

As an illustrative e~yle, consider an outboard flap with the
hhch lines ahead of the leading edge and su~pose that two Mach lines
cross on the flap. (See fig. k.) It is to be determined if the
equation for the lift due to flay deflection (to take a simple
example) is the same equation that would be obtained if the Mach
lines did not cross. The test may be made in the following mmner.

First, determine the pressure coefficients in the various areas
indlqated by numbers in figure ~. In region 1

CP1= c%

c
P2 = cPm - ~P2

where N
P2

is the result of the inboard tip effect so that

% = c% - c~2

Similarly,

where fXp3 is the result

CP3 = CP~ - %3

of the outboard tip effect so that

ACP3 = CP ~ - CP3

15

OF AJ?PLr.cABnmY

Now,

‘Pk = c~m-%2 - LCP3



or

.- —

CP4 = ‘%2 + %3 - cPm

The 13ft per tit flap deflection Is

Now, If the total area .%Lfected Is written as

P
m

.

. .
1 ... I



.

then

s~ -s4=sf ’ -(%+sk)-(s3+sq

.

The area covered by the Inner Mach cone is ~ + S4 ml the area cmerad by the outer Mach cone

la S3 + S4, ao that the final equation for L/q8 u be kitten aa

L

[
AC— = ~ ~ (Total area affected - Area 3R @er Mach cone - Area

q13 ~

in outer Mach cone) + Lift h inner Mach cone + Lift in

1
out er Mach cone

VMCh IS exactly the mm equation that Is wed when the Mach 13nes do not cross..

!Chis method is vary convenient to use, since no lengthy Inte@ticm.a need be perfomkwl..

Althou@ a lift ca6e was wed a~ an example, the eximneion to other cases (hinge moment,

rolllng mmant, and 60 forth) iEI not difficult.
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APPENDIXD

CORRECTION O.F Chb FOR INBOARD FLAP WHEN MACH IJXES MOT7303!7?FIAP

Assume that the flap Mach lines
equation for the hinge moment due to
as (see fig. T2(a))

do not move off the flap; the”
flay deflection may be written

.

—

—

where the first two terms on the right represpnt the hinge moment over
the center section and the remaining term is the hinge moment over the

—

tips . When the Mach lines move off the flap, the fla~ areas behind the
‘ Mach lines can be seen from figure 12(a) to be no longer triangular and,

—

therefore,the moment arm of these areas is no longer ~f. The ,

corrected equation may be written as (see fig. 12(b)) J
.

m“
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where 21 and ‘~

centroids of ASl

19’

are the Ustances from the hinge line to the

and dS, respectively. When

and

and

This part of the hinge mmnent
(see fig. 12(cJ)

[(&I1=-cpqcf-:cf -
m

. .ypmq(cf - ~f$ 3

ml @ be evaluated to give

#Jf - ,f#zsk.lbf~] (

- c,#bf&#p

m 2cm=— =
taneb’

(Cf

-24)3-%f - 2*Y2Cm/b

-3A5%PF%-*!=kbc2 Cf



20 NACA TN NO. 1660

Divide by bf6f2 to obtain the coefficient,

r

(2-*)3
()bf cf 2——

bc

+

L

For the evaluation of AE2 detetination

is necessary. From figure 12(c) the following

and

Then,

oCf 2
—
c

of the quantity ‘5$ dS

equations can be written

~ds. GAA. %A+B(A+B) -~B

Cf bf
= ;%~ db ‘zB~ dcf

When the variable v . ~ is ~trod~~ed,

db w=—dv
P

Pbf
dcf = —

~2 ‘v

* @bf
~B=— _

‘v

3
Cf ~v F2bf 3

zds. -——
3$

?LV
3V3

,

,

—

.

.,

.



.

and 8inoe

.!Qs+Eiin-1~(CP1 @ 2
)

this part of the binge nnuent 232 may be written as

.

l-o
P
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These integrals may be evaluated to give

8

{[

;*-.’% E$BKB*’*
Cf

=—
Y@

-&&_ @=-4R%sin-l ~%fb cf/ c 1 4m2

&2(bf/b)2

.

This equation reduces to

r

.

#

——
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Divide by bfZf2 to obtain the coefficient,

1-

1
-5
[2+4M’%?I

I~bf cf.—
bc

The expressions for ‘h&l ~d ~h
%

when combined with

equation 18 (table ~) restit in equation 19.
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(b) Inboard flaps.

l.- Control-surface configurations.
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F@re 2.- Pressure distributions due to flapdeflection.
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P?e.s.sme on section /-24

(a) m z 1 (rderence 3).

E!?es..re on secz’kw A-A

(b) m <1 (reference 4).

Figure 3.- Pressure distributions due to angle of attack
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\

F@ure 4.- Notation used in appendix C.
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(a) Machlinesonf lap.

.,

.

.

(b) Mach lines off flap.

, f

x

(c) Coordinate system and limits of
determining g ‘h5*

12. - Notation

integration for

in appendix D.


